Exemplar Problem Conic Section

32. Find the equation of the hyperbola with

(a) Vertices $(\pm 5, 0)$, foci $(\pm 7, 0)$

Ans:

The vertices and the foci both lies on the *x*- axis so the hyperbola is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

The vertex is given as $(\pm a, 0)$, so on comparing a = 5.

The foci is given as $(\pm ae, 0)$, so on comparing ae = 7. Here $e = \sqrt{1 + \frac{b^2}{a^2}}$ is eccentricity. On squaring both the sides,

 $\Rightarrow a^2 e^2 = 49$

 $\Rightarrow a^2 + b^2 = 49$

 $\Rightarrow 25 + b^2 = 49$

 $\Rightarrow b^2 = 24$

Therefore, the equation of the hyperbola is $\left(\frac{x^2}{25} - \frac{y^2}{24} = 1\right)$.

(b) Vertex at $(0, \pm 7)$, $e = \frac{4}{3}$

Ans:

Here the vertex lies on the *y* axis so the hyperbola is of the form $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$.

The vertices is given as $(0, \pm b)$, so on comparing b = 7.

The eccentricity is given as $e = \sqrt{1 + \frac{a^2}{b^2}}$. Since $e = \frac{4}{3}$, so on squaring both the sides,

$$\Rightarrow e^2 = \frac{16}{9}$$

$$\Rightarrow 1 + \frac{a^2}{b^2} = \frac{16}{9}$$

$$\Rightarrow \frac{a^2}{49} = \frac{7}{9}$$

$$\Rightarrow a^2 = \frac{343}{9}$$

Therefore, the equation of the hyperbola is $\left(\frac{y^2}{49} - \frac{9x^2}{343} = 1\right)$.

(c) Foci at $\left(0,\pm\sqrt{10}\right)$, passing through (2,3)

Ans:

Here the foci lies on the *y* axis so the hyperbola is of the form $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$.

The foci is given as $(0, \pm be)$, so on comparing $be = \sqrt{10}$.

The eccentricity is given as $e = \sqrt{1 + \frac{a^2}{b^2}}$. So on squaring both the sides,

$$\Rightarrow b^2 e^2 = 10$$

$$\Rightarrow a^2 + b^2 = 10 \dots (1)$$

Since, the hyperbola passes through the point (2, 3), so this point will satisfy the equation.

$$\Rightarrow \frac{9}{b^2} - \frac{4}{a^2} = 1$$

$$\Rightarrow 9a^2 - 4b^2 = a^2b^2 \dots (2)$$

Solving equations (1) and (2) gives $a^2 = 5$ and $b^2 = 5$.

Therefore, the equation of the hyperbola is $\left(\frac{y^2}{5} - \frac{x^2}{5} = 1\right)$.